Scientific definition of radiometric dating

Radiometric dating - Wikipedia

scientific definition of radiometric dating

Geologists use radiometric dating to estimate how long ago rocks formed, and it to the quantity of stable daughter atoms in the rock, scientists can estimate the. radiometric dating(*radioactive dating [1]*)* The most precise method of dating A Dictionary of Ecology , originally published by Oxford University Press .. to the scientific community that radioactive dating was a reliable method . Scientists who use radiometric dating typically use every means at their disposal to check, recheck, and verify their results, and the more important the results the.

First, it provides no evidence whatsoever to support their claim that the earth is very young. If the earth were only —10 years old, then surely there should be some scientific evidence to confirm that hypothesis; yet the creationists have produced not a shred of it so far.

Where are the data and age calculations that result in a consistent set of ages for all rocks on earth, as well as those from the moon and the meteorites, no greater than 10 years?

Glaringly absent, it seems. Second, it is an approach doomed to failure at the outset. Creationists seem to think that a few examples of incorrect radiometric ages invalidate all of the results of radiometric dating, but such a conclusion is illogical. Even things that work well do not work well all of the time and under all circumstances. Try, for example, wearing a watch that is not waterproof while swimming.

Radioactive Dating

It will probably fail, but what would a reasonable person conclude from that? That watches do not work? A few verified examples of incorrect radiometric ages are simply insufficient to prove that radiometric dating is invalid. All they indicate is that the methods are not infallible. Those of us who have developed and used dating techniques to solve scientific problems are well aware that the systems are not perfect; we ourselves have provided numerous examples of instances in which the techniques fail.

Radiometric Dating Does Work!

We often test them under controlled conditions to learn when and why they fail so we will not use them incorrectly. We have even discredited entire techniques. For example, after extensive testing over many years, it was concluded that uranium-helium dating is highly unreliable because the small helium atom diffuses easily out of minerals over geologic time.

As a result, this method is not used except in rare and highly specialized applications. These methods provide valuable and valid age data in most instances, although there is a small percentage of cases in which even these generally reliable methods yield incorrect results.

What is the scientific meaning of radiometric dating - Warsaw Local

Such failures may be due to laboratory errors mistakes happenunrecognized geologic factors nature sometimes fools usor misapplication of the techniques no one is perfect. Not only that, they have to show the flaws in those dating studies that provide independent corroborative evidence that radiometric methods work. This is a tall order and the creationists have made no progress so far. It is rare for a study involving radiometric dating to contain a single determination of age.

Usually determinations of age are repeated to avoid laboratory errors, are obtained on more than one rock unit or more than one mineral from a rock unit in order to provide a cross-check, or are evaluated using other geologic information that can be used to test and corroborate the radiometric ages. Scientists who use radiometric dating typically use every means at their disposal to check, recheck, and verify their results, and the more important the results the more they are apt to be checked and rechecked by others.

As a result, it is nearly impossible to be completely fooled by a good set of radiometric age data collected as part of a well-designed experiment. The purpose of this paper is to describe briefly a few typical radiometric dating studies, out of hundreds of possible examples documented in the scientific literature, in which the ages are validated by other available information. I have selected four examples from recent literature, mostly studies involving my work and that of a few close colleagues because it was easy to do so.

I could have selected many more examples but then this would have turned into a book rather than the intended short paper. The heat of the impact melted some of the feldspar crystals in the granitic rocks of the impact zone, thereby resetting their internal radiometric clocks.

The impact also created shocked quartz crystals that were blasted into the air and subsequently fell to the west into the inland sea that occupied much of central North America at that time. Today this shocked quartz is found in South Dakota, Colorado, and Nebraska in a thin layer the Crow Creek Member within a thick rock formation known as the Pierre Shale.

The Pierre Shale, which is divided into identifiable sedimentary beds called members, also contains abundant fossils of numerous species of ammonites, ancestors of the chambered nautilus. The fossils, when combined with geologic mapping, allow the various exposed sections of the Pierre Shale to be pieced together in their proper relative positions to form a complete composite section Figure 1. The Pierre Shale also contains volcanic ash that was erupted from volcanoes and then fell into the sea, where it was preserved as thin beds.

There are three important things to note about these results. First, each age is based on numerous measurements; laboratory errors, had there been any, would be readily apparent. Second, ages were measured on two very different minerals, sanidine and biotite, from several of the ash beds. Third, the radiometric ages agree, within analytical error, with the relative positions of the dated ash beds as determined by the geologic mapping and the fossil assemblages; that is, the ages get older from top to bottom as they should.

Finally, the inferred age of the shocked quartz, as determined from the age of the melted feldspar in the Manson impact structure The Ages of Meteorites Meteorites, most of which are fragments of asteroids, are very interesting objects to study because they provide important evidence about the age, composition, and history of the early solar system.

That is, at some point in time, an atom of such a nuclide will undergo radioactive decay and spontaneously transform into a different nuclide. This transformation may be accomplished in a number of different ways, including alpha decay emission of alpha particles and beta decay electron emission, positron emission, or electron capture. Another possibility is spontaneous fission into two or more nuclides. While the moment in time at which a particular nucleus decays is unpredictable, a collection of atoms of a radioactive nuclide decays exponentially at a rate described by a parameter known as the half-lifeusually given in units of years when discussing dating techniques.

After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or decay product. In many cases, the daughter nuclide itself is radioactive, resulting in a decay chaineventually ending with the formation of a stable nonradioactive daughter nuclide; each step in such a chain is characterized by a distinct half-life.

In these cases, usually the half-life of interest in radiometric dating is the longest one in the chain, which is the rate-limiting factor in the ultimate transformation of the radioactive nuclide into its stable daughter.

Isotopic systems that have been exploited for radiometric dating have half-lives ranging from only about 10 years e. It is not affected by external factors such as temperaturepressurechemical environment, or presence of a magnetic or electric field. For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time.

This predictability allows the relative abundances of related nuclides to be used as a clock to measure the time from the incorporation of the original nuclides into a material to the present.

Accuracy of radiometric dating[ edit ] Thermal ionization mass spectrometer used in radiometric dating. The basic equation of radiometric dating requires that neither the parent nuclide nor the daughter product can enter or leave the material after its formation.

UCSB Science Line

The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or gain of such isotopes since the sample was created. It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration. Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an isochron.

This can reduce the problem of contamination. In uranium—lead datingthe concordia diagram is used which also decreases the problem of nuclide loss. Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample.

scientific definition of radiometric dating

For example, the age of the Amitsoq gneisses from western Greenland was determined to be 3. The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate. This normally involves isotope-ratio mass spectrometry. For instance, carbon has a half-life of 5, years. After an organism has been dead for 60, years, so little carbon is left that accurate dating cannot be established.

scientific definition of radiometric dating

On the other hand, the concentration of carbon falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades. Closure temperature If a material that selectively rejects the daughter nuclide is heated, any daughter nuclides that have been accumulated over time will be lost through diffusionsetting the isotopic "clock" to zero.

The temperature at which this happens is known as the closure temperature or blocking temperature and is specific to a particular material and isotopic system. These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace. As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy. At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes.

This temperature is what is known as closure temperature and represents the temperature below which the mineral is a closed system to isotopes. Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature.

The age that can be calculated by radiometric dating is thus the time at which the rock or mineral cooled to closure temperature. This field is known as thermochronology or thermochronometry. The age is calculated from the slope of the isochron line and the original composition from the intercept of the isochron with the y-axis.

scientific definition of radiometric dating

The equation is most conveniently expressed in terms of the measured quantity N t rather than the constant initial value No.

A radiometric dating technique that measures the ratio of the rare earth elements neodymium and samarium present in a rock sample was used to produce the estimate. Also, by extrapolating backward in time to a situation when there was no lead that had been produced by radiogenic processes, a figure of about 4.

This figure is of the same order as ages obtained for certain meteorites and lunar rocks. Between and he elucidated the complex sequence of chemical reactions attending the precipitation of salts evaporites from the evaporation of seawater. His success at producing from aqueous solutions artificial minerals and rocks like those found in natural salt deposits stimulated studies of minerals crystallizing from silicate melts simulating the magmas from which igneous rocks have formed.

Bowen conducted extensive phase-equilibrium studies of silicate systems, brought together in his Evolution of the Igneous Rocks Experimental petrology also provides valuable data on the stability limits of individual metamorphic minerals and of the reactions between different minerals in a wide variety of chemical systems. Thus the metamorphic petrologist today can compare the minerals and mineral assemblages found in natural rocks with comparable examples produced in the laboratory, the pressure—temperature limits of which have been well defined by experimental petrology.

Another branch of experimental science relates to the deformation of rocks. In the American physicist P. Bridgman developed a technique for subjecting rock samples to high pressures similar to those deep in the Earth. Studies of the behaviour of rocks in the laboratory have shown that their strength increases with confining pressure but decreases with rise in temperature. Down to depths of a few kilometres the strength of rocks would be expected to increase.

At greater depths the temperature effect should become dominant, and response to stress should result in flow rather than fracture of rocks.

Rubeydemonstrated that fluids in the pores of rock may reduce internal friction and permit gliding over nearly horizontal planes of the large overthrust blocks associated with folded mountains. More recently the Norwegian petrologist Hans Ramberg performed many experiments with a large centrifuge that produced a negative gravity effect and thus was able to create structures simulating salt domes, which rise because of the relatively low density of the salt in comparison with that of surrounding rocks.

With all these deformation experiments, it is necessary to scale down as precisely as possible variables such as the time and velocity of the experiment and the viscosity and temperature of the material from the natural to the laboratory conditions. In another German physicist, Max von Lauerealized that X-rays were scattered and deflected at regular angles when they passed through a copper sulfate crystal, and so he produced the first X-ray diffraction pattern on a photographic film.