Is radiometric dating accurate and reliable

UCSB Science Line

Long-age geologists will not accept a radiometric date unless it matches gives the impression that the method is precise and reliable (box below). years) implies that the calculated date of million years is accurate to. Radiometric dating or radioactive dating is a technique used to date materials such as rocks or . Accurate radiometric dating generally requires that the parent has a long enough half-life that it will be present in significant amounts .. Radiometric Dating and the Geological Time Scale: Circular Reasoning or Reliable Tools?. Radiometric dating is a much misunderstood phenomenon. Evolutionists often misunderstand the method, assuming it gives a definite age for.

This can also be written,and often as E[X]. So, for a die, If you have two random variables and you add them together you get a new random variable same as rolling two dice instead of one. The new variance is the sum of the original two. This property is a big part of why variances are used in the first place. The average also adds, so if the average of one die is 3.

The standard deviation is where the law of large numbers starts becoming apparent. The variance of lots of random variables together adds,but that means that. So, while the range over which the sum of random variables can vary increase proportional to N, the standard deviation only increases by the square root of N. For example, for 1 die the numbers can range from 1 to 6, and the standard deviation is about 1.

What does that matter? Explanations of the steps are below. This is a sum over all the X that fit the condition. Multiply each term in the sum by something bigger than one, and the sum as a whole certainly gets bigger. Additionally, elements may exist in different isotopeswith each isotope of an element differing in the number of neutrons in the nucleus.

A particular isotope of a particular element is called a nuclide. Some nuclides are inherently unstable. That is, at some point in time, an atom of such a nuclide will undergo radioactive decay and spontaneously transform into a different nuclide.

This transformation may be accomplished in a number of different ways, including alpha decay emission of alpha particles and beta decay electron emission, positron emission, or electron capture. Another possibility is spontaneous fission into two or more nuclides. While the moment in time at which a particular nucleus decays is unpredictable, a collection of atoms of a radioactive nuclide decays exponentially at a rate described by a parameter known as the half-lifeusually given in units of years when discussing dating techniques.

After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or decay product.

In many cases, the daughter nuclide itself is radioactive, resulting in a decay chaineventually ending with the formation of a stable nonradioactive daughter nuclide; each step in such a chain is characterized by a distinct half-life.

In these cases, usually the half-life of interest in radiometric dating is the longest one in the chain, which is the rate-limiting factor in the ultimate transformation of the radioactive nuclide into its stable daughter.

Isotopic systems that have been exploited for radiometric dating have half-lives ranging from only about 10 years e. It is not affected by external factors such as temperaturepressurechemical environment, or presence of a magnetic or electric field. For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time.

This predictability allows the relative abundances of related nuclides to be used as a clock to measure the time from the incorporation of the original nuclides into a material to the present. Accuracy of radiometric dating[ edit ] Thermal ionization mass spectrometer used in radiometric dating. The basic equation of radiometric dating requires that neither the parent nuclide nor the daughter product can enter or leave the material after its formation.

The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or gain of such isotopes since the sample was created. It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration. Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an isochron.

This can reduce the problem of contamination. In uranium—lead datingthe concordia diagram is used which also decreases the problem of nuclide loss. Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample. For example, the age of the Amitsoq gneisses from western Greenland was determined to be 3. The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate.

Radiometric Dating is Flawed!! Really?? How Old IS the Earth?

This normally involves isotope-ratio mass spectrometry. For instance, carbon has a half-life of 5, years. After an organism has been dead for 60, years, so little carbon is left that accurate dating cannot be established.

On the other hand, the concentration of carbon falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades.

Closure temperature If a material that selectively rejects the daughter nuclide is heated, any daughter nuclides that have been accumulated over time will be lost through diffusionsetting the isotopic "clock" to zero. The temperature at which this happens is known as the closure temperature or blocking temperature and is specific to a particular material and isotopic system. These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace.

As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy. At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes. This temperature is what is known as closure temperature and represents the temperature below which the mineral is a closed system to isotopes.

Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature. The age that can be calculated by radiometric dating is thus the time at which the rock or mineral cooled to closure temperature. The solubility of various substances in the magma also could be a function of temperature, and have an influence on the composition of the magma at the top and bottom of the magma chamber.

Finally, minerals that crystallize at the top of the chamber and fall may tend to incorporate other substances, and so these other substances will also tend to have a change in concentration from the top to the bottom of the magma chamber. There are quite a number of mechanisms in operation in a magma chamber.

I count at least three so far -- sorting by density, sorting by melting point, and sorting by how easily something is incorporated into minerals that form at the top of a magma chamber. Then you have to remember that sometimes one has repeated melting and solidification, introducing more complications.

There is also a fourth mechanism -- differences in solubilities. How anyone can keep track of this all is a mystery to me, especially with the difficulties encountered in exploring magma chambers.

These will be definite factors that will change relative concentrations of parent and daughter isotopes in some way, and call into question the reliability of radiometric dating. In fact, I think this is a very telling argument against radiometric dating. Another possibility to keep in mind is that lead becomes gaseous at low temperatures, and would be gaseous in magma if it were not for the extreme pressures deep in the earth.

It also becomes very mobile when hot. These processes could influence the distribution of lead in magma chambers. Let me suggest how these processes could influence uranium-lead and thorium-lead dates: The following is a quote from The Earth: The magnesium and iron rich minerals come from the mantle subducted oceanic plateswhile granite comes from continental sediments crustal rock. The mantle part solidifies first, and is rich in magnesium, iron, and calcium.

So it is reasonable to expect that initially, the magma is rich in iron, magnesium, and calcium and poor in uranium, thorium, sodium, and potassium. Later on the magma is poor in iron, magnesium, and calcium and rich in uranium, thorium, sodium, and potassium.

It doesn't say which class lead is in. But lead is a metal, and to me it looks more likely that lead would concentrate along with the iron. If this is so, the magma would initially be poor in thorium and uranium and rich in lead, and as it cooled it would become rich in thorium and uranium and poor in lead.

Thus its radiometric age would tend to decrease rapidly with time, and lava emitted later would tend to look younger. Another point is that of time. Suppose that the uranium does come to the top by whatever reason. Perhaps magma that is uranium rich tends to be lighter than other magma.

Or maybe the uranium poor rocks crystallize out first and the remaining magma is enriched in uranium. Would this cause trouble for our explanation? It depends how fast it happened. Some information from the book Uranium Geochemistry, Mineralogy, Geology provided by Jon Covey gives us evidence that fractionation processes are making radiometric dates much, much too old. The half life of U is 4. Thus radium is decaying 3 million times as fast as U At equilibrium, which should be attained inyears for this decay series, we should expect to have 3 million times as much U as radium to equalize the amount of daughter produced.

Cortini says geologists discovered that ten times more Ra than the equilibrium value was present in rocks from Vesuvius. They found similar excess radium at Mount St.

Helens, Vulcanello, and Lipari and other volcanic sites. The only place where radioactive equilibrium of the U series exists in zero age lavas is in Hawiian rocks. We need to consider the implications of this for radiometric dating.

How is this excess of radium being produced? This radium cannot be the result of decay of uranium, since there is far too much of it. Either it is the result of an unknown decay process, or it is the result of fractionation which is greatly increasing the concentration of radium or greatly decreasing the concentration of uranium.

Thus only a small fraction of the radium present in the lava at most 10 percent is the result of decay of the uranium in the lava. This is interesting because both radium and lead are daughter products of uranium. If similar fractionation processes are operating for lead, this would mean that only a small fraction of the lead is the result of decay from the parent uranium, implying that the U-Pb radiometric dates are much, much too old. Cortini, in an article appearing in the Journal of Volcanology and Geothermal Research also suggests this possibility.

By analogy with the behaviour of Ra, Th and U it can be suggested that Pb, owing to its large mobility, was also fed to the magma by fluids.

This can and must be tested. The open-system behaviour of Pb, if true, would have dramatic consequences On the other hand, even if such a process is not operating for lead, the extra radium will decay rapidly to lead, and so in either case we have much too much lead in the lava and radiometric dates that are much, much too ancient! It is also a convincing proof that some kind of drastic fractionation is taking place, or else an unknown process is responsible. He says this is inexplicable in a closed-system framework and certainly invalidates the Th dating method.

And it is also possible that something similar is happening in the U decay chain, invalidating U based radiometric dates as well. In fact, U and Th both have isotopes of radium in their decay chains with half lives of a week or two, and 6.

Any process that is concentrating one isotope of radium will probably concentrate the others as well and invalidate these dating methods, too. Radium has a low melting point degrees K which may account for its concentration at the top of magma chambers. What radiometric dating needs to do to show its reliability is to demonstrate that no such fractionation could take place. Can this be done? With so many unknowns I don't think so.

How Uranium and Thorium are preferentially incorporated in various minerals I now give evidences that uranium and thorium are incorporated into some minerals more than others. This is not necessarily a problem for radiometric dating, because it can be taken into account. But as we saw above, processes that take place within magma chambers involving crystallization could result in a different concentration of uranium and thorium at the top of a magma chamber than at the bottom.

This can happen because different minerals incorporate different amounts of uranium and thorium, and these different minerals also have different melting points and different densities. If minerals that crystallize at the top of a magma chamber and fall, tend to incorporate a lot of uranium, this will tend to deplete uranium at the top of the magma chamber, and make the magma there look older.

Concerning the distribution of parent and daughter isotopes in various substances, there are appreciable differences. Faure shows that in granite U is 4.

Some process is causing the differences in the ratios of these magmatic rocks. Depending on their oxidation state, according to Faure, uranium minerals can be very soluble in water while thorium compounds are, generally, very insoluble.

These elements also show preferences for the minerals in which they are incorporated, so that they will tend to be "dissolved" in certain mineral "solutions" preferentially to one another.

Is Radiometric Dating Accurate? | mawatari.info

More U is found in carbonate rocks, while Th has a very strong preference for granites in comparison. I saw a reference that uranium reacts strongly, and is never found pure in nature. So the question is what the melting points of its oxides or salts would be, I suppose. I also saw a statement that uranium is abundant in the crust, but never found in high concentrations.

To me this indicates a high melting point for its minerals, as those with a low melting point might be expected to concentrate in the magma remaining after others crystallized out. Such a high melting point would imply fractionation in the magma. Thorium is close to uranium in the periodic table, so it may have similar properties, and similar remarks may apply to it. It turns out that uranium in magma is typically found in the form of uranium dioxide, with a melting point of degrees centrigrade.

This high melting point suggests that uranium would crystallize and fall to the bottom of magma chambers. Geologists are aware of the problem of initial concentration of daughter elements, and attempt to take it into account. U-Pb dating attempts to get around the lack of information about initial daughter concentrations by the choice of minerals that are dated. For example, zircons are thought to accept little lead but much uranium.

Thus geologists assume that the lead in zircons resulted from radioactive decay. But I don't know how they can be sure how much lead zircons accept, and even they admit that zircons accept some lead. Lead could easily reside in impurities and imperfections in the crystal structure.

Also, John Woodmorappe's paper has some examples of anomalies involving zircons. It is known that the crystal structure of zircons does not accept much lead. However, it is unrealistic to expect a pure crystal to form in nature.

Perfect crystals are very rare. In reality, I would expect that crystal growth would be blocked locally by various things, possibly particles in the way. Then the surrounding crystal surface would continue to grow and close up the gap, incorporating a tiny amount of magma. I even read something about geologists trying to choose crystals without impurities by visual examination when doing radiometric dating.

Thus we can assume that zircons would incorporate some lead in their impurities, potentially invalidating uranium-lead dates obtained from zircons. Chemical fractionation, as we have seen, calls radiometric dates into question.

But this cannot explain the distribution of lead isotopes. There are actually several isotopes of lead that are produced by different parent substances uraniumuraniumand thorium. One would not expect there to be much difference in the concentration of lead isotopes due to fractionation, since isotopes have properties that are very similar.

So one could argue that any variations in Pb ratios would have to result from radioactive decay. However, the composition of lead isotopes between magma chambers could still differ, and lead could be incorporated into lava as it traveled to the surface from surrounding materials.

I also recall reading that geologists assume the initial Pb isotope ratios vary from place to place anyway. Later we will see that mixing of two kinds of magma, with different proportions of lead isotopes, could also lead to differences in concentrations. Mechanism of uranium crystallization and falling through the magma We now consider in more detail the process of fractionation that can cause uranium to be depleted at the top of magma chambers.

Uranium and thorium have high melting points and as magma cools, these elements crystallize out of solution and fall to the magma chamber's depths and remelt. This process is known as fractional crystallization. What this does is deplete the upper parts of the chamber of uranium and thorium, leaving the radiogenic lead.

As this material leaves, that which is first out will be high in lead and low in parent isotopes. This will date oldest. Magma escaping later will date younger because it is enriched in U and Th.

There will be a concordance or agreement in dates obtained by these seemingly very different dating methods.

This mechanism was suggested by Jon Covey. Tarbuck and Lutgens carefully explain the process of fractional crystallization in The Earth: An Introduction to Physical Geology. They show clear drawings of crystallized minerals falling through the magma and explain that the crystallized minerals do indeed fall through the magma chamber. Further, most minerals of uranium and thorium are denser than other minerals, especially when those minerals are in the liquid phase.

Crystalline solids tend to be denser than liquids from which they came. But the degree to which they are incorporated in other minerals with high melting points might have a greater influence, since the concentrations of uranium and thorium are so low. Now another issue is simply the atomic weight of uranium and thorium, which is high. Any compound containing them is also likely to be heavy and sink to the bottom relative to others, even in a liquid form.

If there is significant convection in the magma, this would be minimized, however. At any rate, there will be some effects of this nature that will produce some kinds of changes in concentration of uranium and thorium relative to lead from the top to the bottom of a magma chamber. Some of the patterns that are produced may appear to give valid radiometric dates. The latter may be explained away due to various mechanisms. Let us consider processes that could cause uranium and thorium to be incorporated into minerals with a high melting point.

I read that zircons absorb uranium, but not much lead. Thus they are used for U-Pb dating. But many minerals take in a lot of uranium. It is also known that uranium is highly reactive. To me this suggests that it is eager to give up its 2 outer electrons. This would tend to produce compounds with a high dipole moment, with a positive charge on uranium and a negative charge on the other elements. This would in turn tend to produce a high melting point, since the atoms would attract one another electrostatically.

I'm guessing a little bit here. There are a number of uranium compounds with different melting points, and in general it seems that the ones with the highest melting points are more stable. I would suppose that in magma, due to reactions, most of the uranium would end up in the most stable compounds with the highest melting points. These would also tend to have high dipole moments.

Now, this would also help the uranium to be incorporated into other minerals. The electric charge distribution would create an attraction between the uranium compound and a crystallizing mineral, enabling uranium to be incorporated.

But this would be less so for lead, which reacts less strongly, and probably is not incorporated so easily into minerals. So in the minerals crystallizing at the top of the magma, uranium would be taken in more than lead. These minerals would then fall to the bottom of the magma chamber and thus uranium at the top would be depleted. It doesn't matter if these minerals are relatively lighter than others. The point is that they are heavier than the magma.

Two kinds of magma and implications for radiometric dating It turns out that magma has two sources, ocean plates and material from the continents crustal rock. This fact has profound implications for radiometric dating. Mantle material is very low in uranium and thorium, having only 0. The source of magma for volcanic activity is subducted oceanic plates.

Subduction means that these plates are pushed under the continents by motions of the earth's crust. While oceanic plates are basaltic mafic originating from the mid-oceanic ridges due to partial melting of mantle rock, the material that is magma is a combination of oceanic plate material and continental sediments.

Subducted oceanic plates begin to melt when they reach depths of about kilometers See Tarbuck, The Earth, p. In other words, mantle is not the direct source of magma. Further, Faure explains that uraninite UO sub2 is a component of igneous rocks Faure, p. Uraninite is also known as pitchblende. According to plate tectonic theory, continental crust overrides oceanic crust when these plates collide because the continental crust is less dense than the ocean floor.

As the ocean floor sinks, it encounters increasing pressures and temperatures within the crust. Ultimately, the pressures and temperatures are so high that the rocks in the subducted oceanic crust melt. Once the rocks melt, a plume of molten material begins to rise in the crust. As the plume rises it melts and incorporates other crustal rocks. This rising body of magma is an open system with respect to the surrounding crustal rocks. It is possible that these physical processes have an impact on the determined radiometric age of the rock as it cools and crystallizes.

Time is not a direct measurement. The actual data are the ratios of parent and daughter isotopes present in the sample. Time is one of the values that can be determined from the slope of the line representing the distribution of the isotopes. Isotope distributions are determined by the chemical and physical factors governing a given magma chamber. Uranium is believed to be able to incorporate itself as a trace material in many other minerals of low density, and so be relatively highly concentrated in the crust.

A lower mantle concentration of uranium is inferred because if the mantle contained the same uranium concentration as the crust, then the uranium's heat of radiactive decay would keep the crust molten. Rhyolites in Yellowstone N.